Implementation and testing of a multivariate inverse radiation transport solver
John Mattingly and Dean J. Mitchell
Publishing Info: 
Applied Radiation and Isotopes (2011), doi:10.1016/j.apradiso.2011.10.020
Detection, identification, and characterization of special nuclear materials (SNM) all face the same basic challenge: to varying degrees, each must infer the presence, composition, and configuration of the SNM by analyzing a set of measured radiation signatures. Solutions to this problem implement inverse radiation transport methods. Given a set of measured radiation signatures, inverse radiation transport estimates properties of the source terms and transport media that are consistent with those signatures. This paper describes one implementation of a multivariate inverse radiation transport solver. The solver simultaneously analyzes gamma spectrometry and neutron multiplicity measurements to fit a one-dimensional radiation transport model with variable layer thicknesses using nonlinear regression. The solver’s essential components are described, and its performance is illustrated by application to benchmark experiments conducted with plutonium metal.